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ABSTRACT

Investment strategies in multiplicative Markovian market models with transaction costs are defined using growth
optimal criteria. The optimal strategy is shown to consist in holding the amount of capital invested in stocks
within an interval around an ideal optimal investment. The size of the holding interval is determined by the
intensity of the transaction costs and the time horizon. The inclusion of financial derivatives in the models is
also considered. All the results presented in this contributions were previously derived in collaboration with
E. Aurell in papers3–5
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1. INTRODUCTION

An idealised model of investment is a sequence of gambles where the speculator chooses at each time step
her position. The game is multiplicative if the pay-off is proportional to the capital, and it is Markov if the
new capital and new position depend parametrically only on the previous state. The relevant issue consists of
determining which strategy the speculator should pursue. A reasonable choice is to assume that the investor
wishes to maximise the growth of her capital. This latter quantity lends itself to defining a utility function which
permits to specify the growth-optimal investment as a function of the parameters of the model.

Growth optimal criteria for multiplicative Markov process were first investigated by Kelly in the context of
information theory.17 For recent reviews the reader is referred to ref’s.2, 16, 18 “Universal portfolios” proce-
dures10, 11 can also be considered as examples of application growth-optimal criteria.

In the present contribution the issue of how optimal growth strategies are affected by transaction costs is
addressed. Following ref’s,3, 4 a market model is costructed as the continuous time limit of a discrete mul-
tiplicative Markov game describing the dynamics of a stock and bond portfolio. Trading costs are modelled
either by a linear (i.e. proportional to the absolute value of the capital moved by the investor to balance her
portfolio) or by quadratic function of the fraction of capital invested in re-hedging the portfolio. While linear
transaction costs seems to corresponds to more common financial situations, quadratic transaction costs lead to
a mathematical model essentially solvable analytically, a fact which is interesting in itself. From the financial
side, quadratic frictions naturally arise as a particular case of the market impact phenomenology of Farmer.12 In
such framework, if one assumes that market depth grows proportionally to the total wealth of a typical investor
in the market one recovers the quadratic model presented here. The analysis of quadratic transaction costs can
therefore, for example, be relevant to fairly large operators in a market, the actions of which move market prices,
to some extent.

From the mathematical point of view, the continuos time models are expressed in the form of a system of
coupled stochastic differential equations, governing the dynamics of the overall investor capital and of the fraction
of capital invested in stocks. These quantities depends upon control functionals describing the investment
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strategy. Controls are determined by solving an Hamilton-Jacobi-Bellman equation14, 19 giving the optimal
growth rate of the investor capital.

The analysis carried out in papers3, 4 evinces that optimal trading strategies in the presence of linear and
quadratic trading costs are qualitatively identical. The results of3, 4 can be summarised by saying that on an
infinite time horizon the investment optimal strategy consists of allowing the amount of capital invested in stocks
to fluctuate freely within an interval around the optimal portfolio as determined in the absence of trading costs.
The size of the holding interval depends non-analytically on an adimensional parameter measuring the intensity
of the transaction costs.

For financially reasonable values of the parameters in the model, convergence to the full dynamical solution
in the infinite time horizon limit may be surprisingly slow, of the order of years of trading. Hence it is very
relevant the question of the time evolution of the growth optimal strategy over finite investment horizons.

Inquiring the finite investment horizon dynamics has relevance also in the perspective of deriving an option
pricing procedure from growth optimal criteria. In ref5 it was shown that for the market models described
in ref’s3, 4 the well-posedness of the optimisation problem in the presence of derivatives requires to impose a
solvability conditions. The Black and Scholes equation6, 7 was then shown to provide a natural way to impose
such solvability conditions by ruling out the possibility of self-financing portfolios.

The paper is organised as follows. In section 2 the continuous time market model is derived from an elementary
discrete time dynamics. In section 3 the optimisation problem is stated in the framework of the Hamilton-Jacobi-
Bellman equation. In section 4 using elementary dimensional consideration it is shown that the Hamilton-
Jacobi-Bellman equation is solvable in the small transaction costs limit by means of a multi-scale perturbation
theory.9, 13, 15

In section 5 financial derivatives are included in the market model. The emergence5 of the Black and Scholes
equation as a solvability condition for the optimisation problem is discussed. The qualitative properties of the
optimum investment and hedging strategy are also shortly illustrated.

The last section is devoted to conclusions.

2. DERIVATION OF THE MODEL

Consider an investor endowed at time t with a capital Wt a fraction ρt whereof is invested in stocks

W
(Stocks)
t = ρt Wt (1)

The variation in one time step of the wealth in stocks occurs in consequence of

• the market fall-out ut

• the action ∆χt of the speculator who re-hedges her position in the market.

The fraction in stocks at time t + 1 becomes

W
(Stocks)
t+1 = [utρt + ∆χt] Wt (2)

The total wealth at time t + 1 is affected by the stock investment profits or losses and by the trading costs
entailed by any re-hedging:

Wt+1 = [1 + ρt(ut − 1) − ∆Fγ(∆χt)] Wt (3)

Most generally trading costs are described by a semi-positive definite function ∆Fγ vanishing only if the investor
remains idle, i.e. when ∆χ is zero.
From (2), (3) the variation of the invested capital fraction ρt over a time unit is

∆ρt =
ρt + (ut − 1)ρt + ∆χt

1 + ρt(ut − 1) − ∆Fγ(∆χt)
− ρt (4)
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The continuum limit is attained by replacing

ut − 1 → µ dt + σ dBt

∆χt → f dt

∆F → γF(f)dt (5)

The stochastic control f represents the action taken by the investor at time t to re-hedge her position in the
market. The differential dut gives the relative stock price

dut :=
dSt

St
= µ dt + σ dBt (6)

The stochastic differential equation is defined according to the Ito convention. It has the solution

St = So e

(
µ−σ2

2

)
t+σ Bt (7)

A value of µ
σ2 outside the interval [0, 1] thus corresponds to strong inflation or deflation rates. If borrowing and

short-selling is not allowed, the optimal strategy would then simply be to keep all money in stock or all money
in bonds. If borrowing and short-selling is allowed, the problem becomes again similar to the one studied here,
but the relevant intervals would then either be [1,∞] or [−∞, 0].

After a little algebra one finds

dWt = [µρt − γf2(ρt, t)] Wtdt + σρtWt dBt (8)
dρt =

[
f(ρt, t) + a(ρt) + γρtf

2(ρt, t)
]

dt + b(ρt) dBt (9)

with

a(ρt) = ρt(1 − ρt)(µ − σ2ρt)
b(ρt) = σρt(1 − ρt) (10)

The stochastic control is determined as a function of ρt and t, by maximising the expectation value of the wealth
growth:

λ(x, t; T ) = Eρt=x ln
WT

Wt
= Eρt=x

∫ T

t

ds [V (ρs) − γF ] (11)

with

V (ρt) = µρt − σ2

2
ρ2

t (12)

The expectation Eρt=x is conditional on the fraction in stock process ρt having value x at initial time t. The
time difference T − t is the time horizon of the speculator: the time period wherein she wants to optimise her
position in the market. The optimisation is performed with respect to two conflicting effects. On one hand, the
market fall-outs raise or lower the relative amount of invested wealth, motivating the investor to re-balance the
portfolio. On the other, the re-hedging carries trading costs. Two cases will be considered

• “linear” trading costs F = |f |
• “quadratic” trading costs F = f2

In both cases γ is some given positive valued constant.
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3. HAMILTON-BELLMAN-JACOBI FORMALISM

For any stochastic control f such that the system (8), (9) is well defined, the expectation value of the wealth
growth must obey the dynamic programming equation

∂tλ + [f + a + γxF ]∂xλ +
b2

2
∂2

xλ + V − γF = 0

λ(x, T ; T ) = 0 (13)

If borrowing and short-selling is not allowed, the probability measure of ρ is conserved in the interval [0, 1]. This
means for λ (see also4):

∂xλ(x, t; T )|x=0 = ∂xλ(x, t; T )|x=1 = 0 (14)

It is useful to identify the canonical dimensions of the quantities involved in the problem:

[λ] = [x] = 0 , [σ2] = [µ] = [f ] = [1/t] , [γF ] = [1/t] (15)

The optimal growth condition corresponds to an extremal point in the functional dependence of λ upon the
stochastic control f .14, 19 The detailed form of the extremum condition depends on the mathematical modelling
of transaction costs. For “linear” trading costs it was found3

∂tλ + a∂xλ + b2

2 ∂2
xλ + V = 0

(∂xλ)(xMax, t; T ) = − γ
1−γxMax

(∂xλ)(xmin, t; T ) = γ
1+γxmin

(16)

i.e. the stochastic process ρt associated to optimal growth is confined within an interval [xmin , xMax] varying in
time inside [0, 1] with a probability measure which is not absolutely continuous at the boundary.14

Quadratic friction provides for a smoother extremum condition

∂tλ + a ∂xλ + (∂xλ)2

4 γ (1−x ∂xλ) + b2

2 ∂2
xλ + µx − σ2x2

2 = 0

λ(x, T ; T ) = 0

∂xλ(x, t; T )|x=0 = ∂xλ(x, t; T )|x=1 = 0

(17)

In view of Odeledec’s theorem20 the solution of both (16) and (17) can be sought in the form

λ(x, t) = (T − t) � + λ̄(x, t) (18)

with � specifying the asymptotic optimal growth rate.

4. NORMAL FORMS OF THE HAMILTON-BELLMAN-JACOBI EQUATIONS

In the absence of transaction costs the speculator is free to take un-restrained actions to always keep the fraction
allocated to stocks constant

ρopt =
µ

σ2
(19)

The optimal growth rate of the investor capital is1, 19:

�|γ=0 =
µ2

2 σ2
(20)

corresponding to the solution

λ(x, t) = (T − t) �|γ=0 (21)
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of the Hamilton-Bellman-Jacobi equation.

Elementary scaling considerations permit to shed some light on the behaviour of the solutions of (16) and
(17) in the presence of a small but finite trading costs. It is convenient to translate the origin of the x coordinate
to the value of the ideal optimum investment

x → x +
µ

σ2
(22)

The change of variables permits to rewrite drift and diffusion terms in the Hamilton-Bellman-Jacobi equations
as

a = δa , δa =
∑2

i=1 aix
i

b = D + δb , δb =
∑2

i=1 bix
i

(23)

with
D :=

µ

σ

(
1 − µ

σ2

)

The explicit form of the polynomial coefficients is not relevant for the following discussion and it is straightfor-
wardly derived by inserting (22) into (10). Furthermore in the new coordinates specified by (22)

δV = V − �|γ=0 =
σ2x2

2
(24)

4.1. Quadratic transaction costs

Let us first consider the case of quadratic friction. The adimensional parameter measuring the intensity of
trading costs is

ε = σ2γ (25)

The solution of (17) can always be couched into the form

λ(x, t) = (T − t)�|γ=0 + ϕ(x, t; ε) (26)

where ϕ now satisfies

∂tϕ + δa∂xϕ +
σ2 (∂xϕ)2

4 ε
+

σ2 (ρopt + x)(∂xϕ)3

4 ε [1 − (ρopt + x)∂xϕ]
+

(D + δb)2

2
∂2

xϕ + δV = 0 (27)

This latter equation can be rescaled according to

ϕ ⇒ εωϕ ϕ , x ⇒ εωx x , t ⇒ εωt t (28)

Neglecting δa and δb as higher order, the requirement

ωϕ ≥ ωx > 0 (29)

enforcing the existence of the limit ε tending to zero and its convergence to (20) of λ gives

ωϕ = 1 , ωx =
1
4

, ωt =
1
2

(30)

The conclusion is that the normal form9, 13 of the non-linearity in (17) is

∂tλ +
(∂xλ)2

4 γ
+

D2

2
∂2

xλ +
µ2

2 σ2
− σ2x2

2
= 0

λ(y, T ; T ) = 0
λ(x, t; T ) |x=−∞ = λ(x, t; T ) |x=∞ = 0 (31)
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Note that for small ε the properties of the “bulk” of λ can be approximated by imposing probability conservation
on the entire real axis, as the solution is expected to decay rapidly as |x| increases. Equation (31) is exactly
solvable.4 It yields an asymptotic optimal-growth rate

� =
µ2

2 σ2
− D2 σ2 τ

2

with

τ =

√
2 γ

σ2
≡ 2

σ2

√
ε

2
(32)

The investment strategy as a function of the horizon is most conveniently described in terms of a control potential
U

f(x, T − t) = −∂xU(x, T − t) (33)

The integration constant can be fixed by setting

U(x, T − t) = −λ(x, T − t)
2 γ

+
λ(0, T − t)

2 γ
(34)

The behaviour in time of the potential is illustrated in figure 1. The potential gets steeper for long investment
horizons tending asymptotically to a parabolic shape

Uasympt.(x) =
x2

2τ
, (T − t) � τ (35)

In this limit the speculator aims to always hold the invested fraction of capital in a finite interval around the
optimal investment fraction ρopt of (19). In the asymptotic regime the fraction of capital invested in stocks tends
to an Ornstein-Uhlenbeck process8 the invariant measure whereof having variance D2τ/2. This latter quantity
provides the typical size

L� =
√

D2τ ∝ ε
1
4 (36)

of the holding interval in which the speculator allows asymptotically to fluctuate freely. The convergence to the
asymptotic regime is exponential with decay rate τ/2. Note that functional dependence of L� and τ upon ε can
be inferred without explicitly solving (31) from the scaling dimensions (30).

4.2. Linear transaction costs

Analogous scaling considerations can be repeated for (17) with the proviso that the adimensional measure ε of
the intensity of trading costs coincides now with γ for dimensional reasons. One finds

ωϕ =
4
3

, ωx =
1
3

, ωt =
2
3

(37)

Correspondingly, the normal form of the equation is

∂tλ +
D2

2
∂2

xλ +
µ2

2 σ2
− σ2x2

2
= 0

λ(y, T ; T ) = 0
(∂xϕ)(xMax, t; T ) = −(∂xϕ)(xmin, t; T ) = −1 (38)

which was studied in ref..3 The concept of holding interval becomes sharp in the case of linear trading costs. The
probability measure of the fraction of capital invested in stocks is non-vanishing only in the interval comprised
between xmin and xMax. The asymptotical size of the interval is for small ε

L� = (12 D2 ε)
1
3 (39)
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Figure 1. The control potential 2 γ V as defined in (34) for µ = σ2/2, σ = 10−2 and γ = 102 is plotted for time horizons
of T − t = 500, 1000, 2000, 2500 days using both the exact solution of the Hamilton-Jacobi-Bellman equation (17) and of
its normal form (31). The characteristic decay time to the asymptotic regime is τ/2 ∼ 1000 days. The innermost parabola
is obtained from the asymptotic expression (35).

while the asymptotic regime is attained exponentially with a decay rate

τ ∝ ε
2
3 (40)

Again the scaling (39), (40) with ε (i.e. γ) can be read a priori from the scaling dimensions (37).

The qualitative behaviour of the control strategy versus the investment horizon is similar to the smooth case
of quadratic trading costs. The holding interval shrinks as the the time horizon increases. The time dependence
is non-analytic rendering the construction of explicit solution of the non-stationary regime technically more
demanding. Details on the finite horizon behaviour of the linear transaction costs model can be found in ref..5

5. FINANCIAL DERIVATIVES

The market model discussed in the previous sections can be generalised to include financial derivatives. This
was done in ref..5 In order to simplify the discussion it is convenient to restrict the attention to the case of
quadratic transaction costs.

In the presence of a financial derivative the market model is described by the set of four stochastic differential
equations

dWt = Wt

[(
µρt + µ(d)ηt

)
dt +

(
σρt + σ(d)ηt

)
dBt −

(
γ f2 + γ(d) f (d)2

)
dt

]
(41)

dρt =
[
f + a(s) + ρt

(
γf2 + γ(d) f (d)2

)]
dt + b(s) dBt (42)

dηt =
[
fd + a(d) + ηt

(
γf2 + γ(d) f (d)2

)]
dt + b(d) dBt (43)

dSt = µSt dt + σ StdBt (44)

where

a(s) = µ ρt − ρt

[
µρt + µ(d)ηt −

(
σρt + σ(d)ηt − σ

) (
σρt + σ(d)ηt

)]
(45)

a(d) = µ(d) ηt − ηt

[
µρt + µ(d)ηt −

(
σρt + σ(d)ηt − σ(d)

)(
σρt + σ(d)ηt

)]
(46)
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and

b(s) = σ ρt − ρt

(
σρt + σ(d)ηt

)
(47)

b(d) = σ(d) ηt − ηt

(
σρt + σ(d)ηt

)
(48)

Some remarks are in order. The equation for the stock price dynamics (44) is coupled to the system through
the drift and diffusion fields µ(d) and σ(d). These quantities are specified by the derivative price. In ref.5 the
derivative price C was taken to be a pure function of the underlying price alone:

dC

C
=

1
C

[
∂tC + µS∂SC +

σ2 S2

2
∂2

SC

]
dt +

σS∂SC

C
dBt := µ(d)dt + σ(d) dBt (49)

Hence µ(d) and σ(d) are known functions of S whenever C is given. Thus, because of derivative trading described
by ηt, the fraction of capital invested in the financial derivatives, the equations depend explicitly upon the
underlying price at variance with the stock and bond model where the dynamical equations depended solely on
the relative change in price of the stock. All these quantity are affected by the same market fall-out mocked-up
by increments dBt over realisations of the same Brownian motion Bt. Finally, trading of derivatives implies a
transaction costs proportional to γ(d).

The investment strategy is described in (41), (42), (43) by a the pair of stochastic controls f , f (d). Optimal
growth criteria suggest to determine these parameters by requiring the exponential growth

λ(x, t; T ) = Eρt=x ln
WT

Wt
= Eρt=x

∫ T

t

ds
[
V (d)(ρs , ηs) − γf2 − γ(d)f (d)2

]
(50)

with

V (d)(ρ , η) = µ ρ + µ(d) η − (σ ρ + σ(d) η)2

2
(51)

to attain its supremum value. From such surmise, in the absence of transaction costs (51) should determine
the optimal investment strategy. However, the presence of a derivative introduces a significant novelty in the
problem. The potential V (d) is a degenerate quadratic functional of ρ and η: the Hessian of (51) has a zero
eigenvalue. From the financial point of view the phenomenon, signals the possibility of arbitrage. For example,
choices of µ(d) and σ(d) such that

µ − σ

σ(d)
µ(d) > 0 (52)

permit to construct with probability one a self-financing portfolio by going short on derivatives while allocating
in stocks a fraction of capital such that ρ and η are assigned on the marginal subspace of the Hessian of V (d).
Such portfolio returns values of V (d) linearly growing ρ:

V� = ρ
(
µ − σ

σ(d)
µ(d)

)
> 0 (53)

In consequence the optimisation problem is ill-defined for a generic choice of µ(d) and σ(d).

Growth optimum criteria can be invoked if a solvability condition in form of a no-arbitrage requirement is
imposed on the market model. The discussion of the no-arbitrage condition is simplified by the introduction of
a portfolio variable defined as

ζ = ρ +
σ(d)

σ
η (54)

Adopting the new variable

Vd(ρ , η) = µζ − σ2ζ2

2
+

(
σ(d)

σ
µ − µ(d)

)
η (55)
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becomes a convex functional of ζ provided

µ − σ

σ(d)
µ(d) = 0 (56)

Comparison with (49) shows that (56) is equivalent to

∂tC +
σ2 S2

2
∂2

SC = 0 (57)

which is the celebrated Black and Scholes equation6, 7 determining the fair price of a derivative in an arbitrage
free market model. Note that in the derivation of the market model, the risk-free rate of return was assumed to
be zero.

5.1. Optimal capital growth and hedging of derivatives

Imposing the no-arbitrage condition (56) permits to eliminate µ(d) from the equations. Furthermore, the dy-
namical equation for the portfolio variable ζ

dζ =
[
f +

σ(d)

σ
f (d) + a(p) + ζ

(
γ f2 + γ(d)f (d)2

)]
dt + b(p) dBt (58)

can be used instead of (42). The drift and diffusion fields depend upon the Black and Scholes derivative price

a(p) = a + η

[
σ(d)

(
σ(d)

σ
− 1

)
(
µ − σ2ζ

)
+ H +

(
σ(d) − σζ

)
K

]
(59)

a(d) = η

(
σ(d)

σ
− ζ

)
(
µ − σ2ζ

)
(60)

b(p) = b + η

[
σ(d)

(
σ(d)

σ
− 1

)
+ K

]
(61)

b(d) = η (σ(d) − σ ζ) (62)

with a, b given by (10) and

H :=
1
σ

[
∂σ(d)

∂t
+ µSt∂Stσ

(d) +
(σSt)2

2
∂2

St
σ(d)

]
, K := St∂Stσ

(d) (63)

The resulting Hamilton-Bellman equation is

∂tλ + a(p)∂zλ + a(d)∂yλ + σS∂Sλ +

[
σ2 + γ̃(σ(d)2 − σ2)

]
(∂zλ)2

4 ε (1 − z∂zλ − y∂yλ)
+ γ̃

2 σ σ(d)(∂zλ)(∂yλ) + (σ∂yλ)2

4 ε (1 − z∂zλ − y∂yλ)

+
b(p)2

2
∂2

zλ +
b(d)2

2
∂2

yλ +
σ2S2

2
∂2

Sλ + b(p)b(d)∂z yλ + b(p) σS∂z Sλ + b(d) σ S∂y Sλ + µz − σ2z2

2
= 0 (64)

Boundary conditions of interest should now allow to go long or short in derivatives. Consequently probability
conservation may be imposed on the real axis for both the (y, z) variables.

In (64) there appear two adimensional parameters measuring the intensity of transaction costs

ε = σ2 γγ(d)

γ + γ(d)
(65)

and

γ̃ =
γ

γ + γ(d)
(66)
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The first quantity is the analogous of the order parameter (25). The existence of a well defined limit as ε goes
to zero dictates the form of the multi-scale perturbation theory providing the asymptotic solution of the optimal
growth problem (64). The second order parameter (66) measures instead the relative importance of transaction
costs of uderlying and derivatives trading. If transaction costs in stocks and derivatives go to zero with the same
speed then γ̃ tends to a finite value in such limit.

Equation (64) can be solved by means of multi-scale perturbation theory.5 Some results are briefly reported
here. Suppose that the derivative is an European call option, a classical example in mathematical finance. Then
if by S� is denoted the strike price,

σ(d) =
σ S N(φ1)

S N(φ1) − S� N(φ2)

φ1 :=
ln

(
S
S�

)
+ σ2 (T−t)

2

σ
√

T − t
, φ2 := φ1 − σ

√
T − t (67)

and

N(x) =
∫ x

−∞
dy

e−
y2

2√
2 π

=
1
2

[
1 + Erf

(
x√
2

)]
(68)

For S � S� and finite horizon or for large investment horizons

σ(d) → σ (69)

while H and K tend to zero. Then scaling analysis in ε yields the normal form

∂tλ +
σ2(∂zλ)2

4 ε
+

D2

2
∂2

zλ + µz − σ2z2

2
= 0 (70)

In consequence the asymptotic growth rate becomes

� =
µ2

2 σ2
− D2

2

√
ε

2
(71)

Since for any γ according to the definitions (25) and (65) the inequality ε < ε holds true, composing a portfolio
of stocks and derivatives brings about an increase of the asymptotic capital growth rate.

6. CONCLUSIONS

In the present paper two models of trading with transaction costs were analysed using dynamic programming
techniques. The results of such analysis support an “investment confinement” picture as growth optimal strategy
for multiplicative Markov market models with trading costs. According to such picture, differences in the
modelling of the trading costs are reflected only in the different non-analytic powers of the adimensional parameter
measuring the intensity of transaction costs on which the size of the holding interval depends.

Furthermore the role of financial derivatives was also taken into account in the context of multiplicative
Markov market models with trading costs. Black and Scholes pricing of derivatives was shown to emerge as
a natural solvability condition for growth optimal criteria. These latter provide through the solution of an
Hamilton-Bellman-Jacobi equation the hedging strategy that the investor should pursue to maximise her profits.

Acknowledgements

The result presented in this paper were derived in collaboration with Erik Aurell to whom goes the gratitude of
the author also for a careful reading of the present manuscript.

272     Proc. of SPIE Vol. 5848



REFERENCES
1. K.K. Aase, “Optimum portfolio diversification in a general continuous-time model”, Stoch. Proc. and their

Applications 18, (1984) 81–88.
2. E. Aurell, R. Baviera, O. Hammarlid, M. Serva and A. Vulpiani, “A general methodology to price and hedge

derivatives in incomplete markets”, International J. of Theoretical and Applied Finance (IJTAF) 3, No. 1,
(2000) 1-25 and
http://xxx.lanl.gov/abs/cond-mat/9810257.

3. E. Aurell and P. Muratore-Ginanneschi, “Financial Friction and Multiplicative Markov Market Game”, In-
ternational J. of Theoretical and Applied Finance (IJTAF) 3, No. 3 (2000) 501-510 and
http://xxx.lanl.gov/abs/cond-mat/9908253.

4. E. Aurell and P. Muratore-Ginanneschi, “ Growth-Optimal Strategies with Quadratic Friction Over Finite-
Time Investment Horizons”, International J. of Theoretical and Applied Finance (IJTAF) 7, No. 5 (2004)
645-657. and
http://xxx.lanl.gov/abs/cond-mat/0211044.

5. E. Aurell and P. Muratore-Ginanneschi, “ Optimal hedging of derivatives with transaction costs”, to appear
6. F. Black and M.S. Scholes, “The valuation of option contracts and a test of market efficiency”, Journal of

Finance, 27 (2), 399-418 (1972).
7. F. Black and M.S. Scholes, “The pricing of options and corporate liabilities, Journal of Political Economy”,

81 (3), 637-654 (1973).
8. A. Borodin, P. Salminen Handbook of Brownian Motion (Birkhauser Verlag 2002).
9. L.I. Chen, N.D. Goldenfeld and Y. Oono, “The renormalization group and singular perturbations: multiple-

scales, boundary layers and reductive perturbation theory” Phys. Rev. E 54, 376-394 (1996).
10. T. Cover, “Universal Portfolios”, Mathematical Finance, 1, 1-29 (1991).
11. T. Cover and E. Ordentlich, “Universal Portfolios with Side Information”, IEEE Transactions on Information

Theory, 42, 348-363 (1996).
12. J.D. Farmer “Market force, ecology and evolution” Santa Fe Institute series Research in Economics 98-12-

117e (1998) and
http://www.santafe.edu/sfi/publications/Working-Papers.

13. S. Fauve “Patterns in Fluid Flow” Woods Hole Oceanog. Inst. Tech. Rept., WHOI-92-16, (1991).
14. W.H. Fleming and H. Mete Soner Controlled Markov Processes and Viscosity Solutions, (Springer-Verlag,

Berlin 1992).
15. U. Frisch Turbulence: The legacy of A. N. Kolmogorov (Cambridge University Press, 1995)
16. N. Hakanson and W. Ziemba, “Capital Growth Theory”, in Handbooks in OR & MS, Vol.9, eds. R. Jarrow

et al. (Elsevier Science, 1995).
17. J.L. Kelly Jr., “A new interpretation of the Information Rate”, Bell Syst. Tech. J. 35 (1956) 917.
18. S. Maslov and Y.-C. Zhang, “Optimal Investment Strategy for Risky Assets”, International J. of Theoretical

and Applied Finance 1 (1998) 377-388.
19. B. Øksendal Stochastic Differential Equations, 5th ed. (Springer-Verlag, Berlin 1998).
20. V.I. Oseledec, “A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems”,

Trans. Moscow Math. Soc. 19 (1968) 197.

Proc. of SPIE Vol. 5848     273


